
Stanford CS193p
Fall 2013

Stanford CS193p
Developing Applications for iOS

Fall 2013-14

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Today
What is this class all about?
Description
Prerequisites
Homework / Final Project

iOS Overview
What’s in iOS?

MVC
Object-Oriented Design Concept

Objective C
(Time Permitting)
New language!
Basic concepts only for today.

Stanford CS193p
Fall 2013

What will I learn in this course?
How to build cool apps
Easy to build even very complex applications
Result lives in your pocket or backpack!
Very easy to distribute your application through the AppStore
Vibrant development community

Real-life Object-Oriented Programming
The heart of Cocoa Touch is 100% object-oriented
Application of MVC design model
Many computer science concepts applied in a commercial development platform:
 Databases, Graphics, Multimedia, Multithreading, Animation, Networking, and much, much more!
Numerous students have gone on to sell products on the AppStore

Stanford CS193p
Fall 2013

Prerequisites
Most Important Prereq!
Object-Oriented Programming
CS106A&B (or X) required
CS107 or CS108 or CS110 required
(or equivalent for non-Stanford undergrad)

Object-Oriented Terms
Class (description/template for an object)
Instance (manifestation of a class)
Message (sent to object to make it act)
Method (code invoked by a Message)
Instance Variable (object-specific storage)
Superclass/Subclass (Inheritance)

You should know these terms!
If you are not very comfortable with all of these,
this might not be the class for you!

Programming Experience
This is an upper-level CS course.
If you have never written a program where you
had to design and implement more than a handful
of classes, this will be a big step up in difficulty
for you.

Stanford CS193p
Fall 2013

Assignments
Weekly Homework
6 weekly (approximately) assignments
Individual work only
Required Tasks and Evaluation criteria

Final Project
3 weeks to work on it
Individual work only
Keynote presentation required (2 mins or so)

Stanford CS193p
Fall 2013

Core OS
OSX Kernel

Mach 3.0

BSD

Sockets

Security

Power Management

Keychain Access

Certificates

File System

Bonjour

What’s in iOS?

Stanford CS193p
Fall 2013

Core Services
Collections

Address Book

Networking

File Access

SQLite

Core Location

Net Services

Threading

Preferences

URL Utilities

What’s in iOS?

Stanford CS193p
Fall 2013

Media
Core Audio

OpenAL

Audio Mixing

Audio Recording

Video Playback

JPEG, PNG, TIFF

PDF

Quartz (2D)

Core Animation

OpenGL ES

What’s in iOS?

Stanford CS193p
Fall 2013

Cocoa Touch
Multi-Touch

Core Motion

View Hierarchy

Localization

Controls

Alerts

Web View

Map Kit

Image Picker

Camera

What’s in iOS?

Stanford CS193p
Fall 2013

Platform Components

Tools

Language

Frameworks

Design Strategies

[display setTextColor:[UIColor blackColor]];

Foundation UIKit

MVC
Cor

e D
ata

Map Kit

Xcode 5 Instruments

Core Motion

file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app
file://localhost/Developer/Applications/Instruments.app

Stanford CS193p
Fall 2013

Controller

MVC

Model View

Divide objects in your program into 3 “camps.”

Stanford CS193p
Fall 2013

Controller

MVC

Model View

Model = What your application is (but not how it is displayed)

Stanford CS193p
Fall 2013

Controller

MVC

Model View

Controller = How your Model is presented to the user (UI logic)

Stanford CS193p
Fall 2013

Controller

MVC

Model View

View = Your Controller’s minions

Stanford CS193p
Fall 2013

Controller

MVC

Model View

It’s all about managing communication between camps

Stanford CS193p
Fall 2013

Controller

MVC

Model View

Controllers can always talk directly to their Model.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

outlet

Controllers can also talk directly to their View.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

outlet

The Model and View should never speak to each other.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

?outlet

Can the View speak to its Controller?

Stanford CS193p
Fall 2013

Controller

MVC

Model View

outlet

Sort of. Communication is “blind” and structured.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

outlet

target

The Controller can drop a target on itself.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

outlet

target

Then hand out an action to the View.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

outlet

target

The View sends the action when things happen in the UI.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

outlet

should

will did

target

Sometimes the View needs to synchronize with the Controller.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

delegate

outlet

should

will did

target

The Controller sets itself as the View’s delegate.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

delegate

outlet

should

will did

target

The delegate is set via a protocol (i.e. it’s “blind” to class).

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

delegate

outlet

should

will did

target

Views do not own the data they display.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

delegate

outlet

should

will did

target

countdata
at

So, if needed, they have a protocol to acquire it.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

delegate

outlet

data source

should

will did

target

countdata
at

Controllers are almost always that data source (not Model!).

Stanford CS193p
Fall 2013

Controllers interpret/format Model information for the View.

Controller

MVC

Model View

action

delegate

outlet

data source

should

will did

target

countdata
at

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

? delegate

outlet

data source

should

will did

target

countdata
at

Can the Model talk directly to the Controller?

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

delegate

outlet

data source

should

will did

target

countdata
at

No. The Model is (should be) UI independent.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

delegate

outlet

data source

should

will did

target

countdata
at

So what if the Model has information to update or something?

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

Notification
& KVO

delegate

outlet

data source

should

will did

target

countdata
at

It uses a “radio station”-like broadcast mechanism.

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

Notification
& KVO

delegate

outlet

data source

should

will did

target

countdata
at

Controllers (or other Model) “tune in” to interesting stuff.

Stanford CS193p
Fall 2013

A View might “tune in,” but probably not to a Model’s “station.”

Controller

MVC

Model View

action

Notification
& KVO

delegate

outlet

data source

should

will did

target

countdata
at

Stanford CS193p
Fall 2013

Controller

MVC

Model View

action

Notification
& KVO

delegate

outlet

data source

should

will did

target

countdata
at

Now combine MVC groups to make complicated programs ...

Stanford CS193p
Fall 2013

MVCs working together

Stanford CS193p
Fall 2013

MVCs not working together

Stanford CS193p
Fall 2013

Objective-C
New language to learn!
Strict superset of C
Adds syntax for classes, methods, etc.
A few things to “think differently” about (e.g. properties, dynamic binding)

Most important concept to understand today: Properties
Usually we do not access instance variables directly in Objective-C.
Instead, we use “properties.”
A “property” is just the combination of a getter method and a setter method in a class.
The getter (usually) has the name of the property (e.g. “myValue”)
The setter’s name is “set” plus capitalized property name (e.g. “setMyValue:”)
(To make this look nice, we always use a lowercase letter as the first letter of a property name.)
We just call the setter to store the value we want and the getter to get it. Simple.

This is just your first glimpse of this language!
We’ll go much more into the details next week.
Don’t get too freaked out by the syntax at this point.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

Public Declarations Private Implementation

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

The name
of this class.

Don’t forget this!

NSObject is the root class from which pretty
much all iOS classes inherit

(including the classes you author yourself).

Its superclass.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

Note, superclass is not specified here.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import <Foundation/NSObject.h>

Superclass’s header file.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import <Foundation/Foundation.h>

If the superclass is in iOS itself, we import the entire
“framework” that includes the superclass.

In this case, Foundation, which contains basic non-UI objects like NSObject.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

@import Foundation;

In fact, in iOS 7 (only), there is special syntax for
importing an entire framework called @import.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import <Foundation/Foundation.h>

However, the old framework importing
syntax is backwards-compatible in iOS 7.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import <Foundation/Foundation.h> #import "Card.h"

Our own header file must be imported
into our implementation file.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

@interface Card()

@end

#import <Foundation/Foundation.h> #import "Card.h"

Private declarations can go here.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import "Card.h"

@property (strong) NSString *contents;

@interface Card()

@end

#import <Foundation/Foundation.h>

In iOS, we don’t access instance variables directly.
Instead, we use an @property which declares two methods: a “setter” and a “getter”.

It is with those two methods that the @property’s instance variable is accessed
(both publicly and privately).

This particular @property is a pointer.
Specifically, a pointer to an object whose class is (or inherits from) NSString.

ALL objects live in the heap (i.e. are pointed to) in Objective-C!
Thus you would never have a property of type “NSString” (rather, “NSString *”).

Because this @property is in this class’s header file, it is public.
Its setter and getter can be called from outside this class’s @implementation block.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import "Card.h"

@property (strong) NSString *contents;

@interface Card()

@end

#import <Foundation/Foundation.h>

weak would mean:
“if no one else has a strong pointer to this object,

then you can throw it out of memory
and set this property to nil

(this can happen at any time)”

strong means:
“keep the object that this property points to

in memory until I set this property to nil (zero)
(and it will stay in memory until everyone who has a strong

pointer to it sets their property to nil too)”

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import "Card.h"

@property (strong) NSString *contents;, nonatomic

@interface Card()

@end

#import <Foundation/Foundation.h>

nonatomic means:
“access to this property is not thread-safe”.

We will always specify this for object pointers in this course.
If you do not, then the compiler will generate locking code that

will complicate your code elsewhere.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import "Card.h"

@property (strong) NSString *contents;, nonatomic @synthesize contents = _contents;

- (NSString *)contents
{
 return _contents;
}

- (void)setContents:(NSString *)contents
{
 _contents = contents;
}

@interface Card()

@end

#import <Foundation/Foundation.h>

This is the @property implementation that the
compiler generates automatically for you

(behind the scenes).
You are welcome to write the setter or getter

yourself, but this would only be necessary if you
needed to do something in addition to simply
setting or getting the value of the property.

This @synthesize is the line of code that actually creates the
backing instance variable that is set and gotten.

Notice that by default the backing variable’s name is the same as
the property’s name but with an underbar in front.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

@interface Card : NSObject

@end

@implementation Card

@end

#import "Card.h"

@property (strong) NSString *contents;, nonatomic

@interface Card()

@end

#import <Foundation/Foundation.h>

Because the compiler takes care of
everything you need to implement a

property, it’s usually only one line of code
(the @property declaration)

to add one to your class.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@end

#import "Card.h"

@implementation Card

@end

@property (nonatomic
@property (nonatomic

@interface Card()

@end

) BOOL chosen;
) BOOL matched;

Let’s look at some more properties.
These are not pointers.
They are simple BOOLs.

Properties can be
any C type.

That includes int,
float, etc., even C

structs.

C does not define a “boolean” type.
This BOOL is an Objective-C typedef.

It’s values are YES or NO.

Notice no strong or weak here.
Primitive types are not stored in the heap, so there’s no need to

specify how the storage for them in the heap is treated.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@end

#import "Card.h"

@implementation Card

@end

@property (nonatomic
@property (nonatomic

@synthesize chosen = _chosen;
@synthesize matched = _matched;

- (BOOL)
{
 return _chosen;
}
- (void)setChosen:(BOOL)chosen
{
 _chosen = chosen;
}

- (BOOL)
{
 return _matched;
}
- (void)setMatched:(BOOL)matched
{
 _matched = matched;
}

matched

@interface Card()

@end

chosen
) BOOL chosen;
) BOOL matched;

Here’s what the compiler is
doing behind the scenes for

these two properties.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@end

#import "Card.h"

@implementation Card

@end

@property (nonatomic
, getter=isMatched@property (nonatomic

@synthesize chosen = _chosen;
@synthesize matched = _matched;

- (BOOL)
{
 return _chosen;
}
- (void)setChosen:(BOOL)chosen
{
 _chosen = chosen;
}

- (BOOL)
{
 return _matched;
}
- (void)setMatched:(BOOL)matched
{
 _matched = matched;
}

isMatched

@interface Card()

@end

isChosen
, getter=isChosen) BOOL chosen;

) BOOL matched;

It is actually possible to change the name of the getter that is
generated. The only time you’ll ever see that done in this class

(or anywhere probably) is boolean getters.

Note change in getter method.

Note change in getter method.

This is done simply to make
the code “read” a little bit nicer.

You’ll see this in action later.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@end

#import "Card.h"

@implementation Card

@end

@property (nonatomic
, getter=isMatched@property (nonatomic

@interface Card()

@end

, getter=isChosen) BOOL chosen;
) BOOL matched;

Remember, unless you need to do something besides setting or
getting when a property is being set or gotten,

the implementation side of this will all happen automatically for you.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(Card *)card;

@interface Card()

@end

Enough properties for now.
Let’s take a look at defining methods.

Here’s the declaration of a public
method called match: which takes one

argument (a pointer to a Card) and
returns an integer.

What makes this method public?
Because we’ve declared it in the header file.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(Card *)card; - (int)match:(Card *)card
{
 int score = 0;

 return score;
}

@interface Card()

@end

Here’s the declaration of a public
method called match: which takes one

argument (a pointer to a Card) and
returns an integer.

match: is going to return a “score” which says how good a match
the passed card is to the Card that is receiving this message.
0 means “no match”, higher numbers mean a better match.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(Card *)card; - (int)match:(Card *)card
{
 int score = 0;

 return score;
}

if ([card.contents isEqualToString:self.contents]) {
 score = 1;
}

@interface Card()

@end

There’s a lot going on here!
For the first time, we are seeing the

“calling” side of properties (and methods).

For this example, we’ll return 1 if the passed card has
the same contents as we do or 0 otherwise
(you could imagine more complex scoring).

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(Card *)card; - (int)match:(Card *)card
{
 int score = 0;

 return score;
}

if ([card.contents isEqualToString:self.contents]) {
 score = 1;
}

@interface Card()

@end
Notice that we are calling the “getter” for

the contents @property
(both on our self and on the passed card).
This calling syntax is called “dot notation.”

It’s only for setters and getters.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(Card *)card; - (int)match:(Card *)card
{
 int score = 0;

 return score;
}

if ([card.contents isEqualToString:self.contents]) {
 score = 1;
}

@interface Card()

@end

isEqualToString: is an NSString method
which takes another NSString as an argument and
returns a BOOL (YES if the 2 strings are the same).

Recall that the contents
property is an NSString.

Also, we see the “square bracket” notation we use to
send a message to an object.

In this case, the message isEqualToString: is being sent
to the NSString returned by the contents getter.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(NSArray *)otherCards; - (int)match:(
{
 int score = 0;

 return score;
}

NSArray *)otherCards

if ([card.contents isEqualToString:self.contents]) {
 score = 1;
}

@interface Card()

@end

We could make match: even more powerful by
allowing it to match against multiple cards by passing an
array of cards using the NSArray class in Foundation.

Stanford CS193p
Fall 2013

Stanford CS193p
Fall 2013

Card.h Card.m
Objective-C

#import "Card.h"

@implementation Card

@end

#import <Foundation/Foundation.h>

@interface Card : NSObject

@property (strong, nonatomic) NSString *contents;

@property (nonatomic, getter=isChosen) BOOL chosen;
@property (nonatomic, getter=isMatched) BOOL matched;

@end

- (int)match:(NSArray *)otherCards; - (int)match:(
{
 int score = 0;

 return score;
}

NSArray *)otherCards

if ([card.contents isEqualToString:self.contents]) {
 score = 1;
}

for (Card *card in otherCards) {

}

@interface Card()

@end

We’ll implement a very simple match scoring system here which is
to score 1 point if ANY of the passed otherCards’ contents

match the receiving Card’s contents.
(You could imagine giving more points if multiple cards match.)

Note the for-in looping syntax here.
This is called “fast enumeration.”

It works on arrays, dictionaries, etc.

Stanford CS193p
Fall 2013

Coming Up
Next Lecture
More of our Card Game Model
Xcode 5 Demonstration (start building our Card Game application)

Next Week
Finish off our Card Game application
Objective-C in more detail
Foundation (array, dictionary, etc.)
And much much more!

